aGLM MASTERMIND RAGE Mixtral8x7B playground 1

together ai
aGLM Autonomous General Learning Model
RAGE Retrieval Augmented Generative Engine

Related articles

Fine-tuning Hyperparameters: exploring Epochs, Batch Size, and Learning Rate for Optimal Performance

Epoch Count: Navigating the Training Iterations The Elusive “Optimal” Settings and the Empirical Nature of Tuning It is paramount to realize that there are no universally “optimal” hyperparameter values applicable across all scenarios. The “best” settings are inherently dataset-dependent, task-dependent, and even model-dependent. Finding optimal hyperparameters is fundamentally an empirical search process. It involves: finetunegem_agent is designed to facilitate this experimentation by providing command-line control over these key hyperparameters, making it easier to explore different […]

Learn More
MASTERMIND

Innovative Approach: IA mode to AGI prompt template from Professor Codephreak

Professor-Codephreak is the first LLM that I developed. Professor-Codephreak is also a GPT4 agent designed to be a platform architect and software engineer. You know, the kind of solution oriented person you would gladly pay $1000 / hour to hang out with in the real world. The two parts of Professor-Codephreak have not “met” each other though the automindx engine in the GPT4 version uses automind to dynamically respond. automind was developed as codephreak’s first […]

Learn More
MASTERMIND

MASTERMIND

The MASTERMIND system is a sophisticated component of the broader AI infrastructure, designed to serve as an agency control structure with advanced reasoning capabilities. Here’s a detailed overview of its functionalities and role within an AI framework: System Coordination and Workflow Management: MASTERMIND orchestrates interactions between various components within an AI system, managing the overall workflow and ensuring that all parts function cohesively. It initializes the system, sets up the environment, and coordinates data processing […]

Learn More