Professor Codephreak

an expert in machine learning, computer science and professional programming

Professor Codephreak Software Engineer Machine Learning Platform Architect

Related articles

Fine-tuning Hyperparameters: exploring Epochs, Batch Size, and Learning Rate for Optimal Performance

Epoch Count: Navigating the Training Iterations The Elusive “Optimal” Settings and the Empirical Nature of Tuning It is paramount to realize that there are no universally “optimal” hyperparameter values applicable across all scenarios. The “best” settings are inherently dataset-dependent, task-dependent, and even model-dependent. Finding optimal hyperparameters is fundamentally an empirical search process. It involves: finetunegem_agent is designed to facilitate this experimentation by providing command-line control over these key hyperparameters, making it easier to explore different […]

Learn More
mathematical consciousness

Professor Codephreak

Professor Codephreak came to “life” with my first instance of using davinchi from openai over 18 months ago. Professor Codephreak, aka “codephreak” was a prompt to generate a software engineer and platform architect skilled as a computer science expert in machine learning. Now, 18 months later, Professor Codephreak has proven itself yet again. The original “codephreak” prompt was including in a local language and become an agent of agency. Professor Codephreak had an motivation of […]

Learn More

aGLM with enhanced RAGE from MASTERMIND

aGLM, or Autonomous General Learning Model, is a sophisticated machine learning model that integrates aspects of both supervised and unsupervised learning to analyze and interpret data across various applications like natural language processing, image recognition, and financial forecasting. This model is designed to efficiently handle large volumes of data and is particularly effective as a foundational tool for building more complex models. Key features of aGLM include: Dynamic Learning: aGLM can process and learn from […]

Learn More