RAGE

RAGE

RAGE Retrieval Augmented Generative Engine

Related articles

SimpleMind

blueprint for a SimpleMind Using easyAGI

Abstract: This article conceptualizes the creation of an advanced Autonomous General Intelligence (AGI) system, named “easyAGI,” integrating several cutting-edge AI components. Theoretical in nature, this blueprint outlines the essential modules required to construct such a system, emphasizing the principles behind each component without delving into implementation specifics. Introduction: The pursuit of AGI aims to create a machine capable of understanding, learning, and performing intellectual tasks across various domains, akin to human cognitive abilities. The easyAGI […]

Learn More
ezAGI

ezAGI

Augmented Generative Intelligence Framework The ezAGI project is an advanced augmented generative intelligence system that combining various components to create a robust, flexible, and extensible framework for reasoning, decision-making, self-healing, and multi-model interaction. Core Components MASTERMIND Purpose:The mastermind module serves as the core orchestrator for the easyAGI system. It manages agent lifecycles, integrates various components, and ensures the overall health and performance of the system. Key Features: SimpleCoder Purpose:The SimpleCoder module defines a coding agent […]

Learn More

aGLM

aGLM, or Autonomous General Learning Model, is designed to operate as a core model for autonomous data parsing and learning from memory in the context of artificial intelligence systems. It’s a pivotal element within a broader system called RAGE (Retrieval Augmented Generative Engine). Key aspects and functionalities of aGLM: Autonomous Learning: aGLM is built to learn autonomously from interactions and data retrievals. It continuously updates its knowledge base, refining its capabilities based on new data […]

Learn More