MASTERMIND aGLM with RAGE

Related articles

MASTERMIND

Innovative Approach: IA mode to AGI prompt template from Professor Codephreak

Professor-Codephreak is the first LLM that I developed. Professor-Codephreak is also a GPT4 agent designed to be a platform architect and software engineer. You know, the kind of solution oriented person you would gladly pay $1000 / hour to hang out with in the real world. The two parts of Professor-Codephreak have not “met” each other though the automindx engine in the GPT4 version uses automind to dynamically respond. automind was developed as codephreak’s first […]

Learn More
together ai

aGLM MASTERMIND RAGE Mixtral8x7B playground 1

together.ai provides a cloud environment playground for a number of LLM including Mixtral8x7Bv1. This model was chosen for the 32k ++ context window and suitable point of departure dataset for deployment of aGLM Autonomous General Learning Model. aGLM design goals include RAGE with MASTERMIND controller for logic and reasoning. The following three screenshots show the first use of aGLM recognising aGLM and MASTERMIND RAGE components to include machine.dreaming and knowledge as THOT from aGLM parse. […]

Learn More

Chain of TRUST in LLM

https://galadriel.com/ In the realm of artificial intelligence, verifying that an AI response genuinely came from a specific model and wasn’t tampered with presents a significant challenge. The Chain of Trust in verified AI inference provides a robust solution through multiple layers of security and cryptographic proof. The Foundation: Trusted Execution Environment (TEE) At the core of verified inference lies the Trusted Execution Environment (TEE), specifically AWS Nitro Enclaves. This hardware-isolated environment provides a critical security […]

Learn More