aGLM with enhanced RAGE from MASTERMIND

Related articles

Chain of TRUST in LLM

https://galadriel.com/ In the realm of artificial intelligence, verifying that an AI response genuinely came from a specific model and wasn’t tampered with presents a significant challenge. The Chain of Trust in verified AI inference provides a robust solution through multiple layers of security and cryptographic proof. The Foundation: Trusted Execution Environment (TEE) At the core of verified inference lies the Trusted Execution Environment (TEE), specifically AWS Nitro Enclaves. This hardware-isolated environment provides a critical security […]

Learn More
together ai

aGLM MASTERMIND RAGE Mixtral8x7B playground 1

together.ai provides a cloud environment playground for a number of LLM including Mixtral8x7Bv1. This model was chosen for the 32k ++ context window and suitable point of departure dataset for deployment of aGLM Autonomous General Learning Model. aGLM design goals include RAGE with MASTERMIND controller for logic and reasoning. The following three screenshots show the first use of aGLM recognising aGLM and MASTERMIND RAGE components to include machine.dreaming and knowledge as THOT from aGLM parse. […]

Learn More
fundamentalAGI

FundamentalAGI Blueprint

funAGI Objective: Develop a comprehensive Autonomous General Intelligence (AGI) system named FundamentalAGI (funAGI). This system integrates various advanced AI components to achieve autonomous general intelligence, leveraging multiple frameworks, real-time data processing, advanced reasoning, and a sophisticated memory system. Design will be modular for dynamic adaptation using modern object oriented programming technique primary in the Python language. Components of funAGI: the big picture Detailed Architecture and Implementation Plan 1. Cognitive Architecture 2. Multi-Modal and Multi-Model Integration […]

Learn More