aGLM with enhanced RAGE from MASTERMIND

Related articles

mathematical consciousness

Professor Codephreak

Professor Codephreak came to “life” with my first instance of using davinchi from openai over 18 months ago. Professor Codephreak, aka “codephreak” was a prompt to generate a software engineer and platform architect skilled as a computer science expert in machine learning. Now, 18 months later, Professor Codephreak has proven itself yet again. The original “codephreak” prompt was including in a local language and become an agent of agency. Professor Codephreak had an motivation of […]

Learn More

Reliable fully local RAG agents with LLaMA3

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_rag_agent_llama3_local.ipynb Building reliable local agents using LangGraph and LLaMA3-8b within the RAGE framework involves several key components and methodologies: Model Integration and Local Deployment: LLaMA3-8b: Utilize this robust language model for generating responses based on user queries. It serves as the core generative engine in the RAGE system. LangGraph: Enhance the responses of LLaMA3 by integrating structured knowledge graphs through LangGraph, boosting the model’s capability to deliver contextually relevant and accurate information. Advanced RAGE Techniques: […]

Learn More

Fine-tuning Hyperparameters: exploring Epochs, Batch Size, and Learning Rate for Optimal Performance

Epoch Count: Navigating the Training Iterations The Elusive “Optimal” Settings and the Empirical Nature of Tuning It is paramount to realize that there are no universally “optimal” hyperparameter values applicable across all scenarios. The “best” settings are inherently dataset-dependent, task-dependent, and even model-dependent. Finding optimal hyperparameters is fundamentally an empirical search process. It involves: finetunegem_agent is designed to facilitate this experimentation by providing command-line control over these key hyperparameters, making it easier to explore different […]

Learn More