Hackathon Challenge:

Related articles

production_transformer.py

The Transformer architecture is a type of neural network that has advanced natural language processing (NLP) tasks while recently being applied to various other domains including time series prediction. Here’s a detailed look at its key components and how they function: Key Components of Transformer Architecture: How Transformers Work for Financial Forecasting: Practical Considerations: In summary, the Transformer architecture is particularly well-suited for tasks where understanding the relationship between elements of a sequence is crucial, […]

Learn More

aGLM

aGLM, or Autonomous General Learning Model, is designed to operate as a core model for autonomous data parsing and learning from memory in the context of artificial intelligence systems. It’s a pivotal element within a broader system called RAGE (Retrieval Augmented Generative Engine). Key aspects and functionalities of aGLM: Autonomous Learning: aGLM is built to learn autonomously from interactions and data retrievals. It continuously updates its knowledge base, refining its capabilities based on new data […]

Learn More
SimpleMind

SimpleMind: A Neural Network Implementation in JAX

The SimpleMind class is a powerful yet straightforward implementation of a neural network in JAX. It supports various activation functions, optimizers, and regularization techniques, making it versatile for different machine learning tasks. With parallel backpropagation and detailed logging, it provides an efficient and transparent framework for neural network training.

Learn More