Autonomous General Learning Model

fundamental AGI

putting the fun into a fundamental augmented general intelligence framework as funAGI funAGI is a development branch of easyAGI. easyAGI was not being easy and SimpleMind neural network was proving to not be simple. For that reason is was necessary to remove reasoning.py and take easyAGI back to its roots of BDI Socratic Reasoning from belief, desire and intention. So this back to basics release should be taken as a verbose logging audit of SocraticReasoning […]

Learn More
Symbolic Logic

LogicTables Class: Managing Logic and Beliefs

The LogicTables class in logic.py is designed to handle logical expressions, evaluate their truth values, and manage beliefs as valid truths. It integrates with the SimpleMInd or similar neural network system to process and use truths effectively. Key Features: Initialization and Logging The LogicTables class initializes with logging configuration to capture debug information: Adding Variables and Expressions Truth tables are generated to evaluate logical expressions: Expressions are evaluated using logical operators: def evaluate_expression(self, expr, values):allowed_operators […]

Learn More
SimpleMind

SimpleMind: A Neural Network Implementation in JAX

The SimpleMind class is a powerful yet straightforward implementation of a neural network in JAX. It supports various activation functions, optimizers, and regularization techniques, making it versatile for different machine learning tasks. With parallel backpropagation and detailed logging, it provides an efficient and transparent framework for neural network training.

Learn More