RAGE

RAGE

RAGE Retrieval Augmented Generative Engine

Related articles

autotrain

===== Application Startup at 2024-04-27 19:17:38 ===== ========== == CUDA == ========== CUDA Version 12.1.1 Container image Copyright (c) 2016-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience. WARNING: […]

Learn More

aGLM

aGLM, or Autonomous General Learning Model, is designed to operate as a core model for autonomous data parsing and learning from memory in the context of artificial intelligence systems. It’s a pivotal element within a broader system called RAGE (Retrieval Augmented Generative Engine). Key aspects and functionalities of aGLM: Autonomous Learning: aGLM is built to learn autonomously from interactions and data retrievals. It continuously updates its knowledge base, refining its capabilities based on new data […]

Learn More
workflow

workflow for providing solution from AGI as a response from reasoning

To provide a solution that processes user input through various reasoning methods, then integrates the decision-making with the Socratic reasoning process to provide a final AGI response, follow this workflow. This will involve updates to several modules and integrating logging and reasoning processes. Here’s the detailed workflow: Workflow Steps: Workflow Roadmap from UI to AGI Solution: By following this workflow, the system ensures that user input is processed through multiple reasoning methods, validated and refined […]

Learn More