RAGE for LLM as a Tool to Create Reasoning Agents as MASTERMIND

RAGE addresses these limitations by dynamically retrieving information from internal and external databases that are continually updated to create memory. This not only ensures the relevance and accuracy of the information provided by the LLMs but also significantly reduces the incidence of hallucinations. By integrating RAGE, LLMs can perform more effectively in knowledge-intensive tasks where precision and up-to-date knowledge are crucial (arXiv).

https://realtimenewsanalysis.com/building-rag-based-llm-applications
RAGE

Related articles

RAGE

RAGE

RAGE Retrieval Augmented Generative Engine

Learn More
you are?

LogicTables Module Documentation

Overview The LogicTables module is designed to handle logical expressions, variables, and truth tables. It provides functionality to evaluate logical expressions, generate truth tables, and validate logical statements. The module also includes logging mechanisms to capture various events and errors, ensuring that all operations are traceable. Class LogicTables Attributes

Learn More
Autonomous Generative Intelligence Framework

Autonomous General Intelligence (AGI) framework

As we celebrate the establishment of the easy Autonomous General Intelligence (AGI) framework, it’s essential to appreciate the intricate steps that transform a user’s input into a well-reasoned response. This article provides a verbose detailing of this entire workflow, highlighting each component’s role and interaction. Let’s delve into the journey from user input to the final output. Stage one is nearly complete. reasoning from logic. 1000 versions later. This is the basic framework so far. […]

Learn More