aGLM MASTERMIND RAGE Mixtral8x7B playground 1

together ai
aGLM Autonomous General Learning Model
RAGE Retrieval Augmented Generative Engine

Related articles

workflow

workflow for providing solution from AGI as a response from reasoning

To provide a solution that processes user input through various reasoning methods, then integrates the decision-making with the Socratic reasoning process to provide a final AGI response, follow this workflow. This will involve updates to several modules and integrating logging and reasoning processes. Here’s the detailed workflow: Workflow Steps: Workflow Roadmap from UI to AGI Solution: By following this workflow, the system ensures that user input is processed through multiple reasoning methods, validated and refined […]

Learn More

The asyncio library in Python

The asyncio library in Python provides a framework for writing single-threaded concurrent code using coroutines, which are a type of asynchronous function. It allows you to manage asynchronous operations easily and is suitable for I/O-bound and high-level structured network code. Key Concepts Basic Usage Here’s a simple example of using asyncio to run a couple of coroutines: Creating Tasks You can use asyncio.create_task() to schedule a coroutine to run concurrently: Anticipate Futures Futures represent a […]

Learn More

RAGE for LLM as a Tool to Create Reasoning Agents as MASTERMIND

Introduction: article created as first test of GPT-RESEARCHER as a research tool The integration of Retrieval-Augmented Generative Engine (RAGE) with Large Language Models (LLMs) represents a significant advancement in the field of artificial intelligence, particularly in enhancing the reasoning capabilities of these models. This report delves into the application of RAGE in transforming LLMs into sophisticated reasoning agents, akin to a “MASTERMIND,” capable of strategic reasoning and intelligent decision-making. The focus is on how RAG […]

Learn More