MASTERMIND aGLM with RAGE

Related articles

autotrain

===== Application Startup at 2024-04-27 19:17:38 ===== ========== == CUDA == ========== CUDA Version 12.1.1 Container image Copyright (c) 2016-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience. WARNING: […]

Learn More
fundamental augmented general intelligence

funAGI workflow fundamental autonomous general intelligence framework

The funAGI system is designed as a modular framework for developing an autonomous general intelligence. The workflow integrates several components and libraries to achieve adaptability, dynamic interaction, continuous optimization, and secure data management. Below is a detailed explanation of the funAGI workflow based on the provided files and documentation. 1. Component Initialization 2. Core AGI Logic 3. User Interaction 4. Reasoning and Logic 5. API and Integration 6. Communication and Interaction 7. Installation and Requirements […]

Learn More
ezAGI

ezAGI

Augmented Generative Intelligence Framework The ezAGI project is an advanced augmented generative intelligence system that combining various components to create a robust, flexible, and extensible framework for reasoning, decision-making, self-healing, and multi-model interaction. Core Components MASTERMIND Purpose:The mastermind module serves as the core orchestrator for the easyAGI system. It manages agent lifecycles, integrates various components, and ensures the overall health and performance of the system. Key Features: SimpleCoder Purpose:The SimpleCoder module defines a coding agent […]

Learn More