Autonomous General Learning Model

RAGE MASTERMIND with aGLM

RAGE MASTERMIND with aGLM: A Comprehensive Analysis In the rapidly evolving field of artificial intelligence and machine learning, the integration of advanced generative models with autonomous systems has become a focal point for developers and researchers. One such integration is the RAGE MASTERMIND with aGLM (Autonomous General Learning Model), a pioneering approach in AI development. This report delves into the specifics of this integration, exploring its components, functionalities, and potential implications in the broader context […]

Learn More

RAGE for LLM as a Tool to Create Reasoning Agents as MASTERMIND

Introduction: article created as first test of GPT-RESEARCHER as a research tool The integration of Retrieval-Augmented Generative Engine (RAGE) with Large Language Models (LLMs) represents a significant advancement in the field of artificial intelligence, particularly in enhancing the reasoning capabilities of these models. This report delves into the application of RAGE in transforming LLMs into sophisticated reasoning agents, akin to a “MASTERMIND,” capable of strategic reasoning and intelligent decision-making. The focus is on how RAG […]

Learn More

Reliable fully local RAG agents with LLaMA3

https://github.com/langchain-ai/langgraph/blob/main/examples/rag/langgraph_rag_agent_llama3_local.ipynb Building reliable local agents using LangGraph and LLaMA3-8b within the RAGE framework involves several key components and methodologies: Model Integration and Local Deployment: LLaMA3-8b: Utilize this robust language model for generating responses based on user queries. It serves as the core generative engine in the RAGE system. LangGraph: Enhance the responses of LLaMA3 by integrating structured knowledge graphs through LangGraph, boosting the model’s capability to deliver contextually relevant and accurate information. Advanced RAGE Techniques: […]

Learn More