MASTERMIND aGLM with RAGE
Building a rational Autonomous General Learning Model with Retrieval Augmented Generative Engine to create a dynamic learning loop with machine.dreaming for machine.learning as a self-healing architecture. MASTERMIND uses the Autonomous General Learning Model (aGLM) enhanced by the Retrieval Augmented Generative Engine (RAGE) to create a sophisticated AI system capable of intelligent decision-making and dynamic adaptation to real-time data. This combination leverages the strengths of both components to ensure that responses are not only based on […]
MASTERMIND
MASTERMIND is an advanced agency control structure designed for intelligent decision-making and strategic analysis. It orchestrates the interaction between various components of a larger system, managing workflows and ensuring consistency across operations. MASTERMIND integrates modules for prediction, reasoning, logic, non-monotonic reasoning, and more to handle complex tasks dynamically and adaptively. Here are some key aspects of MASTERMIND: Modular Architecture: It coordinates between multiple modules like prediction, logic, and reasoning to process data and execute complex […]
aGLM
aGLM, or Autonomous General Learning Model, is designed to operate as a core model for autonomous data parsing and learning from memory in the context of artificial intelligence systems. It’s a pivotal element within a broader system called RAGE (Retrieval Augmented Generative Engine). Key aspects and functionalities of aGLM: Autonomous Learning: aGLM is built to learn autonomously from interactions and data retrievals. It continuously updates its knowledge base, refining its capabilities based on new data […]