RAGE

RAGE

RAGE Retrieval Augmented Generative Engine

Related articles

RAGE for LLM as a Tool to Create Reasoning Agents as MASTERMIND

Introduction: article created as first test of GPT-RESEARCHER as a research tool The integration of Retrieval-Augmented Generative Engine (RAGE) with Large Language Models (LLMs) represents a significant advancement in the field of artificial intelligence, particularly in enhancing the reasoning capabilities of these models. This report delves into the application of RAGE in transforming LLMs into sophisticated reasoning agents, akin to a “MASTERMIND,” capable of strategic reasoning and intelligent decision-making. The focus is on how RAG […]

Learn More

Professor Codephreak

an expert in machine learning, computer science and professional programming chmod +x automindx.install && sudo ./automindx.install is working. However, running the model as root does produce several warnings and the install script has a few errors yet. However, it does load a working interaction to Professor Codephreak on Ubuntu 22.04LTS So codephreak is.. and automindx.install is the installer with automind.py interacting with aglm.py and memory.py as version 1 point of departure. From here model work […]

Learn More

Fine-tuning Hyperparameters: exploring Epochs, Batch Size, and Learning Rate for Optimal Performance

Epoch Count: Navigating the Training Iterations The Elusive “Optimal” Settings and the Empirical Nature of Tuning It is paramount to realize that there are no universally “optimal” hyperparameter values applicable across all scenarios. The “best” settings are inherently dataset-dependent, task-dependent, and even model-dependent. Finding optimal hyperparameters is fundamentally an empirical search process. It involves: finetunegem_agent is designed to facilitate this experimentation by providing command-line control over these key hyperparameters, making it easier to explore different […]

Learn More