RAGE for LLM as a Tool to Create Reasoning Agents as MASTERMIND

RAGE addresses these limitations by dynamically retrieving information from internal and external databases that are continually updated to create memory. This not only ensures the relevance and accuracy of the information provided by the LLMs but also significantly reduces the incidence of hallucinations. By integrating RAGE, LLMs can perform more effectively in knowledge-intensive tasks where precision and up-to-date knowledge are crucial (arXiv).

https://realtimenewsanalysis.com/building-rag-based-llm-applications
RAGE

Related articles

fundamental augmented general intelligence

funAGI workflow fundamental autonomous general intelligence framework

The funAGI system is designed as a modular framework for developing an autonomous general intelligence. The workflow integrates several components and libraries to achieve adaptability, dynamic interaction, continuous optimization, and secure data management. Below is a detailed explanation of the funAGI workflow based on the provided files and documentation. 1. Component Initialization 2. Core AGI Logic 3. User Interaction 4. Reasoning and Logic 5. API and Integration 6. Communication and Interaction 7. Installation and Requirements […]

Learn More
ezAGI

ezAGI

Augmented Generative Intelligence Framework The ezAGI project is an advanced augmented generative intelligence system that combining various components to create a robust, flexible, and extensible framework for reasoning, decision-making, self-healing, and multi-model interaction. Core Components MASTERMIND Purpose:The mastermind module serves as the core orchestrator for the easyAGI system. It manages agent lifecycles, integrates various components, and ensures the overall health and performance of the system. Key Features: SimpleCoder Purpose:The SimpleCoder module defines a coding agent […]

Learn More

Learn More