FundamentalAGI Blueprint

fundamentalAGI

funAGI

Objective: Develop a comprehensive Autonomous General Intelligence (AGI) system named FundamentalAGI (funAGI). This system integrates various advanced AI components to achieve autonomous general intelligence, leveraging multiple frameworks, real-time data processing, advanced reasoning, and a sophisticated memory system. Design will be modular for dynamic adaptation using modern object oriented programming technique primary in the Python language.

Components of funAGI: the big picture

  1. Mastermind Controller of Agency (MCA)
    • Central control unit managing various AGI functions.
    • Ensures coordination and execution of tasks across different modules.
  2. OpenMind Multi-Model Integration (OMMI)
    • Integrates various AI models for multi-modal processing.
    • Facilitates seamless communication between models for enhanced understanding and decision-making.
  3. WebMind Information Parser (WIP)
    • Parses and integrates information from the web and network resources.
    • Ensures real-time updates and knowledge acquisition from external sources.
  4. AutoMind Reasoning Environment (ARE)
    • Comprised of logic.py, reasoning.py, SocraticReasoning.py, and bdi.py.
    • Provides advanced reasoning capabilities, including logical reasoning, Socratic questioning, and belief-desire-intention (BDI) modeling.
  5. SimpleMind Neural Network (SMNN)
    • Utilizes JAX for creating and training neural network models.
    • Focuses on efficient learning and adaptability.
  6. AutoMindX Executable Folder (AMX)
    • Dynamic build environment located in the mindx rwx folder.
    • Allows for on-the-fly creation and execution of AI models and scripts.
  7. AGLM (Autonomous General Learning Model)
    • Built from memory.py parser and memory folder.
    • Central to the system’s learning capabilities, enabling autonomous general learning and continuous improvement.
  8. Memory System
    • Short-Term Memory (STM)
      • RAM-based memory for immediate data processing and tasks.
      • storage of each input response as timestamp.json
      • ./memory/stm
    • Long-Term Memory (LTM)
      • Database and ROM for storing and retrieving long-term knowledge.
      • ./memory/ltm
      • ./memory/context
      • ./memory/truth
      • ./memory/agents
      • ./memory/prompts
    • RAGE (Retrieval Augmented Generative Engine)
      • Uses AGLM to enhance learning by creating memory contexts from the context folder.

Detailed Architecture and Implementation Plan

1. Cognitive Architecture

  • Central Processing:
    • Implement the Mastermind Controller of Agency (MCA) to oversee and manage the entire system.
    • Ensure efficient task execution and coordination among different components.

2. Multi-Modal and Multi-Model Integration

  • OpenMind Multi-Model Integration (OMMI):
    • Develop a framework to integrate models for various tasks such as image recognition, speech processing, and natural language understanding.
    • Ensure seamless data flow and communication between these models to leverage their strengths.

3. Information Parsing and Real-Time Data Integration

  • WebMind Information Parser (WIP):
    • Develop robust parsing algorithms to gather information from the web and other network resources.
    • Ensure real-time data updates and integration into the system’s knowledge base.

4. Advanced Reasoning Environment

  • AutoMind Reasoning Environment (ARE):
    • Implement logic.py, reasoning.py, SocraticReasoning.py, and bdi.py to provide comprehensive reasoning capabilities.
    • Enable logical reasoning, advanced questioning, and belief-desire-intention modeling for complex problem-solving.

5. Neural Network Learning

  • SimpleMind Neural Network (SMNN):
    • Utilize JAX to create efficient and adaptable neural network models.
    • Focus on deep learning, reinforcement learning, and meta-learning for skill acquisition and adaptation.

6. Dynamic Build Environment

  • AutoMindX Executable Folder (AMX):
    • Set up a dynamic build environment for on-the-fly model creation and execution.
    • Ensure flexibility and adaptability in developing and deploying new AI models.

7. Autonomous General Learning Model

  • AGLM and Memory System:
    • Develop the AGLM using memory.py and the memory folder for autonomous learning capabilities.
    • Implement a dual memory system (STM and LTM) for efficient data processing and knowledge retention.
    • Integrate RAGE to enhance learning by creating contextual memories for improved performance.

Continuous Learning and Improvement

  • Online and Self-Supervised Learning:
    • Implement algorithms for continuous learning from new data without the need for complete retraining.
    • Utilize self-supervised learning techniques to generate training data and enhance decision-making.
  • Feedback Loops:
    • Establish continuous feedback loops for performance evaluation and strategy adjustment.
    • Incorporate human oversight and expert feedback to align with human values and ethical considerations.

Ethical Considerations

  • Safety and Robustness:
    • Ensure the system adheres to strict safety protocols, including fail-safes and error detection mechanisms.
  • Transparency and Accountability:
    • Design the system to be transparent in its decision-making processes.
  • Alignment with Human Values:
    • Implement ethical reasoning frameworks to ensure actions align with human values and ethical standards.

Implementation Phases

  1. Research and Development:
    • Conduct thorough research to identify the latest advancements in relevant fields.
    • Develop prototypes and conduct iterative testing to refine capabilities.
  2. Collaboration and Integration:
    • Collaborate with domain experts to integrate technologies and frameworks.
    • Ensure the system remains at the forefront of innovation.
  3. Deployment and Monitoring:
    • Deploy the system in controlled environments initially.
    • Gradually expand operational scope with continuous improvement and monitoring.

Conclusion

Creating funAGI requires integrating advanced AI techniques, robust memory systems, and ethical frameworks. By leveraging multi-modal integration, continuous learning, and adaptive reasoning, funAGI aims to achieve autonomous general intelligence capable of independent operation, continuous self-improvement, and adaptive interaction across diverse environments.


This blueprint outlines the fundamental components and implementation strategies necessary to develop the funAGI system, aiming to achieve a sophisticated level of autonomous general intelligence. More information and the first “working” SocraticReasoning environment is available at

https://github.com/autoGLM/funAGI

Related articles

ezAGI

ezAGI

Augmented Generative Intelligence Framework The ezAGI project is an advanced augmented generative intelligence system that combining various components to create a robust, flexible, and extensible framework for reasoning, decision-making, self-healing, and multi-model interaction. Core Components MASTERMIND Purpose:The mastermind module serves as the core orchestrator for the easyAGI system. It manages agent lifecycles, integrates various components, and ensures the overall health and performance of the system. Key Features: SimpleCoder Purpose:The SimpleCoder module defines a coding agent […]

Learn More
MASTERMIND

MASTERMIND

The MASTERMIND system is a sophisticated component of the broader AI infrastructure, designed to serve as an agency control structure with advanced reasoning capabilities. Here’s a detailed overview of its functionalities and role within an AI framework: System Coordination and Workflow Management: MASTERMIND orchestrates interactions between various components within an AI system, managing the overall workflow and ensuring that all parts function cohesively. It initializes the system, sets up the environment, and coordinates data processing […]

Learn More

autotrain

===== Application Startup at 2024-04-27 19:17:38 ===== ========== == CUDA == ========== CUDA Version 12.1.1 Container image Copyright (c) 2016-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved. This container image and its contents are governed by the NVIDIA Deep Learning Container License. By pulling and using the container, you accept the terms and conditions of this license: https://developer.nvidia.com/ngc/nvidia-deep-learning-container-license A copy of this license is made available in this container at /NGC-DL-CONTAINER-LICENSE for your convenience. WARNING: […]

Learn More